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ABSTRACT
N 9 ‘ .
“Mn this paper we use:Conley's index to study the critical points of a
functional f on a finite dimensional sphere in presence of a symmetry group.
AWezbrove a theorem which leads to a lower bound on the number of critical
points of £ when the group is finite, even if the action is not free.
This investigation has been motivated by the following bifurcation
problem:
st
Au = Xu X
where A is a variational G-equivariant operator.
«.We give an estimate on the number of "branches™ bifurcating from an

eigenvalue of A'(0). '°

s
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SIGNIFICANCE AND EXPLANATION

We consider the bifurcation problem
A(u) = Au

where A 1is a nonlinear-variational operator with A(0) = 0. For such
operators it is well known that every eigenvalue Ao of the linearized
operator A'(0) is a bifurcation point. If the problem exhibits some
symmetry, the eigenvalues of A'(0) are generally degenerate.

Under suitable assumptions, we prove that the number of "branches" which
bifurcate from (o,Xo) is larger than or equal to the multiplicity of AO'
This very concrete problem leads us to the study of symmetric functionals on

the n-dimensional sphere which we analyze using the Conley index.
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MORSE THEORY FOR SYMMETRIC FUNCTIONALS ON THE SPHERE
AND AN APPLICATION TO A BIFURCATION PROBLEM

1 2

Vieri Benci and Filomena Pacella

INTRODUCTION

We consider the following nonlinear eigenvalue problem
(0. 1) Alu) = Au
where A 1is an operator of class ¢l defined on a real Hilbert space H such that
A(Q) = O.

We suppose that A is variational i.e. there exists a functional J : H+ R such
that:
(0,2) A=J
where J' denotes the gradient of J. It is well known (cf (K}, [Bo), (M]) that, under
these assumptions, every finite multiplicity isolated eigenvalue of the linearized !
eguation:
{0.3) A'(0)v = v . i
is a bifurcation point of A,

However, if A is odd and ko is an isolated eigenvalue of (0.3) with multiplicity
n, Bohme and Marino ({Bo),IM])) have proved that at least 2n "branches" of solutions of
(0.1) bifurcate from XO' i.e. the multiplicity of the linearized problem persists in thre
nonlinear problem (at least in a certain sense).

In this case the functional J 1is invariant with respect to the action of the group

Gy = {14,-14} ~ zz.

Moreover the eigenvalue problem can be reduced, by virtue of the procedure of BShme

and Marino, to the study of the critical points of J on a manifold isomorphic to the l
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{(n-1)=-dimensional sphere s"'1. The result finally follows from the fact that
cat(s®1/Gg) = n
where cat(*) denotes the Ljusternik-Schnirelman category.

The purpose of this paper is to investigate if there are other group actions which
lead to a multiplicity result of the BShme-Marino type, even in the case when the L.-S.
category of the quotient space is not known and when the action of the group is not free
(cf. sect. 1).

In theorem 2.1 we obtain an estimate of the number of critical points of a functional
defined on S™ ' which is invariant with respect to the action of a finite group. This
result allows us to extend the BShme~Marino result to more general sgituations (Th, 3.1).

Since in our situation we cannot use the L. S. category, the choice of the Morse

theory seems suitable. We have also used the Conley index to treat the degenerate case.

-2-




1. Notation and preliminaries

let M be a n~dimensional compact manifold and f a C1

function on M. A point
Xg in M is a critical point for f |if f'(xo) = 0, Let K Dbe the set of the critical
points of f and we suppose that K has a finite number of connected components. The
collection of its connected components will be denoted by {M'}'eP.
Since the sets M' are igolated in K, using the values of f, we can order them in
such a way that they form a Morse decomposition in the sense of (C) and [CZ]. Then to each

M there corresponds a formal polynomial p('.M") which expresses the “"Conley's index" of

M' in the gradient flow:

(1.2) X = =£'(x)
For instance, if f € c? and M= {x'}, where x is a nondegenerate critical point,
then:
4
(1.3) p(t,xﬂ) = t

where d is the number of negative eigenvalues of the Hessian Hf in the point X . If

fec?

and M' is given by an isolated, degenerate critical point X then, in general,
p(t,x") is not equal to td {see [C) for some examples).

We give the following definition:

DRFINITION 1.1 - The number u(H") = p(1,H") is said to be the multiplicity of H".
Prom our definition it follows that each nondegenerate critical point has multiplicity
Definition 1.1 is justified by the following argument. It is known (see also [MP]) that

if £ s c2

and has some degenerate critical points, then you can perturb it obtaining
another function ?. "near” f, which has only nondegenerate critical points. By using
the continuity property of Conley's index this implies that if x is an igolated
degenerate critical point of f, with u(xo) = p, then it splits in at least p non-
degenerate critical points of ;.

To the manifold M there corresponds a formal polynomjial P(t,M), that is the
"poincaré” polynomial of M which "represents" the cohomology of M with coefficients in

some field F (see [Sp]). For instance if M = s", then P(t,s") = 1*tn, for each

field F, because the cohomology groups of S" are:

1.




i n F for { =0 or n
H (S ;F) =

0 otherwige .

with this understood, the "generalized" Morse relations are:

(1.4) ) PLEM ) = P(t,M) + (1+£)Q (¢)
"

where Qf(t) is a polynomial with nonnegative coefficients which depends on f. Because

of this we have:

(1.5) T pless ) > Pe,M)
w

where this inequality must he interpreted in the sense that every coefficient of the left
hand side polynomial 1s greater than or egqual to the corresponding coefficient of P(t,M).

In particular, if f € c? is nondegenerate we have:

by i
(1.6) Tptem) = ) ac
w i=0

where ai is the number of critical points whose Morse index is equal to i. Then, since
the coefficients of P(t,M) are the "Betti” numbers of M, from (1.4) and (1.6) we obtain

the classical Morse inequalities for f.

REMARK 1.1 ~ The definition of Conley's index applies in much more general situations than
that described here. The only thing that you require in order to define this index is the
presence of a flow in a topological space (see also [SM]).

We end this section recalling something about group actions and introducing some
notations (we refer to [Br] for proofs and details).

let G be a compact Lie-group and X a topological space.

An action of G on X is a map

$ : Gx X+ X , 4$lg,x) = gx

with the following properties:

(1.7) ix = x for each x € X, teG

-4
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(1.8) q1(qzx) - (9192)x 94,9, € G, x € X .

A space with an action of a group G is called a G-space. We say that the action of G
on X is free, if:
(t.9) g% 1 =x>gx % x for each x € X .

We denote by O, = {gx,geG} the orbit of x and by X/G the set of all orbits.When
the action is free, each 0x looks like G in the gense that there exists a natural
homeomorphism between o, and G.

The closed subgroup of G defined by

G, = {gec : gx = x}
is called the isotrop; group of x. Of course, if the action is free Gx = {1}, for
each x.

¢4 Gx = G, we say that x is a fixed point under the action of G. We want to
point out that if X is a manifold and the action of G 1is not free, then, in general,
X/G is not a manifold.

Given the function f : X + R, we say that f 1is G-invariant if €(qgx) = f(x) for
each x € X and g€ G. If X and Y are two G~gpaces, we say that a function
F:X*Y is G-equivariant if:

F(gx) = gF(x) for each x @€ X and g€ G .
Finally we recall that, if H is a real Hilbert space, the action of a group G on H |is
said to be orthogonal if (x,y) = (gx,qy), for every g € G, X,y € H, where (+,*) is
the scalar product in H. From now on everytime we say "orthogonal group® it is understood

that we are considering a group with an orthogonal action.




2. Critical points of symmetric functions on the sphere.

Let S® denote the sphere in IP+1, G a finite group acting orthogonally on s" and
let £ : S® + R be a G-invariant C1-function.

We denote by |G| and |G the order of G and G, respectively and by loxl the

l
x
number of distinct elements of Oy« Ve set

5 = G.C.D.{|0x| : x e k}
where K 1is the set of critical points of f and G.C.D. denotes the greatest common
divisor.
REMARK 2.1 - We observe that |o | = *ng, thus |o | 1s a divisor of |G|. 1If the
action is free, then § = |G|. *

The main result of this section is the following theorem:

THEOREM 2.1: If &8 » 2 then f has at least n+1 orbits of critical points provided

that each critical point is counted with its multiplicity in the sense of Definition 1.1.

Proof: If f has infinitely many critical points then the theorem is proved. So we can
guppose that f has only finitely many critical points. This implies that each of them is
a connected component in the set K. Hence the sets M“ of the Morse decomposition
defined in the previous section are just points and the generalized Morse equalities (1.4)
are:

(2.2) ) pte,mM ) = p(t,8") + () (t) .
"

Writing explicitely (2.2) we have:
n i n n-1
(2.3) L oagtt = e+ (14e) ) Bt

i=0 1 i=0

i

where 1+t" represents the cohomology of s" with a field of coefficients F.

Note that the maximum exponent in the left hand side of (2.3) is n because the
index-polynomial of each critical point cannot contain a power bigger than t", if n is
the dimension of the manifold on which f is defined.

Since f is invariant under the action of G the polynomial p(t,nn) is invariant

too, i.e. it is the same for points in the same orbit. This implies that each coefficient

6=




a, different from 0 1is a multiple of §. From (2.3) it follows that

1
( % M8y
% = B8y
(2.4 i .
o = Bty
a =148 .
\

We want to prove that each ﬂi is different from 0 and is not a multiple of &8, arguing
by induction. For Bo this is true since o is a multiple of §.
Now suppose that this is true for Bi_1. Then (2.4) implies ui + 0 and so

a, = p8, for some p ¥ 0. Therefore, since B is not a multiple of ¢, Bi is

i-1
different from 0 and is not a multiple of §. Having proved that 81 > 0, for each

0 € i € n-1, the assertion follows from (2.4), because each o has to be greater than

i
zero.
0
REMARK 2.2 - From the proof of the previous theorem it turns out that since each ci is
different from 0, for every 0 < i €< n, f has at least § critical points whose poly-

nomials contain the power ti.

COROLLARY 2.1 - If f e C2 is not degenerate, then there exists at least one orbit of G

consisting of critical points of f with Morse index i, for i = 0,...,n. 1In particular

f has at least n+1 critical points which lie in different orbits.

PROOF: It follows from remark 2.2 and the fact that for each nondegenerate critical point

d
x_, pit,{x }) =t where 4 is the Morse index of X .
" ] .4 o

COROLLARY 2.2 - If the action of G on s is free, then f has at least (n+1)|G|

critical points.
REMARK 2.3 - If G = zp and the action is free the assertion of Corollary 2.1 can be

obtained using the Ljusternik-Schnirelman category. 1In fact, consider the

diagram
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where ¥ is the projection and T 1is defined by the diagram itself. Since cat(s"/zp) =
n+1, then f has at least n+1 critical points. Then f has at least (n+1)|G| 4
critical points. Under this point of view Corollary 2.1 is an extension of this result
any finite group G. However the knowledge of cat(8%/G) gives extra information in !

"degenerate” case. In fact if cat(S"/G) = n+1, there exist always at least (n+1)}|G| 4

distinct critical points, no matter how degenerate they are. If cat(sn/G) € n, then
using Corollary 2.2, we can conclude that there exists at least (n+1)|G! critical points

only if they are counted with their multiplicity in the sense of definition 1.1.

REMARK 2.4 - The result of Theorem 2.1 is of topological nature. Therefore the same result

applies not only to the n-dimensional sphere but to any manifold G-homeomorphic to it.




3. A bifurcation theorem.

We begin this section by stating the following Lemma which is the equivariant version
of a lemma of A. Marino [M] (cf. also ([Bol).

LEMMA 3.1 - let G be a group acting orthogonally on the Hilbert spaces, Xq/X, and Y.
(1)
2

Let @ be a G-invariant neighborhood of 0 in x1 x X and set

I = {(x’,xz) e X, XX, !le < Y|x1l}, Y>0. let B:TI'NQ=~-{0} Y bea C1~ogerator

1

with the following properties:

B(x1,0)

i) 1lim —’—'T—=O
x1*0 x1

ii) there exists an isomorphism By from x2 to Y such that:

B§2(X1,x2) + B, strongly if:

Ix,|
'x1| + 'le + 0 and x1 + 0

Ix, |

ii1) 8;1(x1,x2) + 0 strongly if [x,| + Ix,| + 0 ana =T
1

iv) B 1is G-equivariant.

For ¢,§ > 0 set

c = {(x1,x2) e Xy x X, : |x2| <c |x1'}

F={x ex :0c<]|x|<s}.

1
Then

If ¢ and § are gufficiently small there exists an unique function

(1) with its graph in ¢ such that

B(x1,x2) =0 Aif and only if Xy = ¢(x1)

. for every (x1,x2) ec nQ.

(IT) The function 4 is c1 and lim ¢1(x1) = 0

>0
X,

(1)
In X, x X, there is the "diagonal” action of G:
g(x1,x2) = (gx1,gx2) g egG, (x1,x2) e x1 x x2 .

-9-




(IIX) ¢ is G-equivariant.
PROOF: The proof of (1) and (II) is contained in (M]. We have only to prove that ¢ is

G-equivariant. For every g€ G and x, € P, by (I, 0(qx1) is the only point such
that
(3.1) a(qx1,0(gx‘)) =0 .
But we also have
B(gx1,q$(x1)) - gB(x1.¢(x,)) =0 .

By the above equality and (3.1) it follows that ¢(gx1) - g¢(x1). The proof is complete.
o

Now let H be a Hilbert space on the real field with the orthogonal action of a
group G and let Q S H be a G-invariant open set, with 0 e Q.

We consider the equation:

(3.2) A(u) = Ju

where A 1is a variational G-equivariant operator of class c’, i.e. there exists a G-
invariant functional of class C2, J : H+ R guch that

(3.3) A(u) = J'(u)

where J' denotes the gradient of J. Morecver, we suppose that A(0) = 0 go that 0
provides the trivial solution of (3.2).

Now lets suppose that Ao is an isolated eigenvalue of A'(0) of finite
multiplicity. By our assumptions A'(0) is a selfadjoint operator, then we have the
following splitting of H:

H=Hy ®Hy
where Hy = ker(A'(0) - AOI) (I denotes the identity in H) and H, = Hﬁ -
range(A*'(0) - XOI). P1 and P2 will denote the orthogonal projection on H‘ and Hz
respectively.

For every u € H, u; and u, will denote Pyu and Pyu respectively.

Since G 1is an orthogonal group, H1 and nz are invariant under the action of G.

Using this decomposition of H, equation (3.2) is equivalent to the following system:

-10~




PR

p1m-u\1¢x_>.“] -0

2
[ul
(3.4)
P, (hu - e Ly
2
ul
where |*| is the norm in H.
The operator:
Bu = B(uy,u,) = P, [Au - 2U8)
M ] 2 ' I2
u
ia G-equivariant. 1In fact:
A
B{gu,,qu,) = P, (A(qu_,qu ) -('M)'qul -
1 2 2 1 2 2
lqu]
= P_[gAu - {Au,0) gqu} = gP_[Au - Au,u u] .
2 ulz 2 |\l‘2

We have used the fact that G is orthogonal and A is G-equivariant. Moreover B
satisfies all the hypotheses of Lemma 3.1 (see {(M]}. Then we deduce the existence of a

cone C = {u : |P2u| < ¢|P1“|}: anumber § >0 and a C' - G-equivariant function:

$ : {u1 €H, :0< |u1l < 48} + H,
such that:
(3.5) lim ¢'(u, ) = 0
1
u 0
1
(3.6) B(u‘,uz) = 0 if and only if “2 = ¢(u1) .

Let us call M the graph of ¢. This is a G-invariant n-dimensional manifold,

where n 4is the dimension of Hyo

Then we consider the sphere Sp = {ue®Hd: |u| = p} and prove the following:

LEMMA 3.2 ~ There exists po > 0, such that, for each 0 < p < po, Mp H Sb n M is G-

homeomorphic to the (n-1)-dimensional sphere Sy in H,.

PROOF: For u, in §,, i.e. |uyl =1, and € small enough we consider the map:
s‘ x ]o,el » R

defined by: glu,,t) = % Itu, + O(tu1)l2. We have:

-1y-




3
= q(u1,t) = (tu, + ¢(tu,), u

3 + 0‘(tu1)u1) -

1

- t(u1,u1) + t(u'.b'(tu1)u1) + (0(tu1),u1) +

+ (¢(tu1), 0'(tu1)u1) .

Thus by the property of ¢ and ¢' it follows that
:—t glu,,t) = t|u1|2 + olt) .
Therefore there exists o > 0 such that
%; g(u1,t) > 0 for every t € (0,90) .
Then we can apply the implicit function theorem to solve the equation:
glu,t) = % 92 (for p < oo)
and we can say that there exists an unique function:
T 3 S1 + (0,0o)
with the property that:
g(u1,t) = % 92, if and only if t = r(u1) .
Note that since gq is G-invariant, also T is G-invariant.
Then we consider the map:
£f s1 > Hp defined by:
f(u1) = 'r(u1)u1 + o(r(u1)u1) .
This map is the required G-homeomorphism.
It is easy to see that, since T is G-invariant, and ¢ 1is G-equivariant, f is G-
equivariant, Moreover f is bijective because if u, + ;’, then ‘r(u1)u1 + 1(;1)01,

since t(u1) and T(;,) are both positive, and this implies that the correaponding points

in the graph of ¢ are different.
O

We now need the following lemma whose proof can be found in [M].

LPMMA 3.3 - Bvery critical point of J and this provides

is a critical point of J s’

MD [

a solution of equation (3.2).

Now we can atate the main result of this section:




Theorem 3.1 - Let H, be the eigenspace of A'(0) corresponding to an isolated eigenvalue

Xo of finite multiplicity n. Suppose that A 48 G-equivariant where G is a finite

group and set

(3.6") v = c.c.o.{loul, ues, nH} .

1

Then if Vv » 2, for every o small enough, equation (3.2) has at least n orbits of

solutions u such that {ul " p, provided that every solution is counted with its
H

muitiplicity in the sense of Definition 1.1.

PROOF: By lemma 3.3, it is sufficient to estimate the number of critical points of J M
By lemma 3.2 we know that Mp is G-diffeomorphic to s1 n H, vwhich is a (n-1)

dimensional sphere. Therefore theorem 2.2 can be applied (cf. remark 2.4) with

5§ = G.C.D.”Oul : u e K}
with

= v - .
k= {u e ", ! (J,Mp) (u) = 0}

By the definition of §,

8> G.C.D.(loul tue Mp}
and by lemma 3.2

G.c.D.{lou[ tue Hp} =v .

Then the conclusion follows.

REMARK 3.2 - Notice that the number 2 defined by (3.6') depends only on the action of

G on the eigenspace H; corresponding to the eigenvalue Xo (or more precisely on

Hy 0 Sy). The action of the group on Hy = Hﬁ is not relevant to the bifurcation from

Ao.
As an application of the previous Theorem we will study the following problem:

(3.7) -du = uf(w)  ,  u e HI(R)

where Q2 c Rz

is the square (]~ %71[)2 and H;(Q) denotes the usual Sobolev space.
! 1is invariant under the action of the group of the symmetry of the square which is

denoted by Cqyr TO be more precise Cav is the group of the following matrices:

-13~
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The group C,, induces an action on H;(ﬂ) in the following way
'rgu = ulgi(x,y)) . ge c‘w (x,y)eg .

We suppose that

(3.8) tecm

(3.9) £'(e) < a +alel’ pew

1
(3.10) £(0) =0 ; £'(0) =1 .
We now set F(t) = ]: £f(s)ds. Then by standard arguments it follows that the functional
(3.11) J(u) = [ F(u)dxdy
is a c2 - C4qp~invariant functional on H;(Q). on H;(ﬂ) we use the gradient norm:
jQ’Vulzdxdy
<*,*> will denote the corresponding scalar product. Then the critical points of J on
the sphere {lul . £} satisfy the following equation
! !Q f(u)v dxdy = ) ]Q Vu¥v dxdy
which gives a solution of (3.7) with u = {u
Now we define the operator A : H;(n) *> H;lﬂ) by the formula
<a{u),v> = JQ f(u)v dxdy for every v € n;(n) .
It is known that, by virtue of (3.8), (3.9) and (3.10) A e C‘(H;(n)) and
<A'(0)(v],w> = !n £7(0)vw dxdy = ]n vw dx dy .
The eigenvalue problem for A'(0), in weak formulation, takes the form
<A'(0)[v],w> =X < v,w> Vwe n;(n)
which explicitly gives
Jﬂ vw dxdy = A | VuVw dxdy Vwe H;(Q)

or =AdAv = v.

Therefore the eigenvalues of A'(0) are given by the formula

1

m,n m2+n2

L4 »
and the corresponding eigenfunctions are: sin n(x + ;)ein m(x + 3), that is:

-14-




8in nx . sin my n,m both even

sin nx . cos my n even, m odd
(3.13)

cos nx . sin my n odd, m even

cos nx + cos my n,m both odd .

It is easy to see that in the first three cases Cq induces an action on the eigenspaces

v
corresponding to an which does not have fixed points.
Moreover, since |C4'v| = 8 it is obvious that
1
5 : G.C.D.{C4’v(u)] ueH s} 2
if H, is an eigenspace of A'(0) (and of =-A) which does not contain fixed points.

Therefore, by theorem 3.1, the following result follows;

2

Theorem 3.2 - let U be a eigenvalue of =-A and suppose that u = m2 + n“ {implies that

m and n are not both odd. Then u is a bifurcation point of (3.7) and if k is the

dimengion of the corresponding eigenspace then for every small €, (3.7) has at least

2(k+1) solutions u such that lul s =€,
Ho(ﬂ)
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